Jhe Excellence Key...

CLASS - X (PRE-BOARD) TERM -I				
$\begin{aligned} & \text { (CODE-041) } \\ & \text { Time : } 90 \text { MINUTES } \end{aligned}$				TMC-TS-AG-TS-1-OBJ-(MCQ) Maximum Marks: 40
General Instructions: 1. This question paper contains three sections - A, B a 2. Section - A has 20 MCQs , attempt any 16 out of 20 . 3. Section - B has 20 MCQs, attempt any 16 out of 20 4. Section - C has 10 MCQs, attempt any 8 out of 10 . 5. There is no negative marking. 6. All questions carry equal marks.				
SECTION - A In this section, attempt any 16 questions out of Questions $1-20$. Each Question is of 1 mark weightage.				
Q. 1	MATCHING QUESTIONS DIRECTION : Each question contains statements given in two columns which have to be matched. Statement (A, B, C, D,E) in column I have to be matched with statement ($\mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}, \mathrm{t}$) in column II .			
		Column-I		Column-II
	(A)	$3-\sqrt{2}$ is	(p)	A Rational number between 1 and 2
	(B)	$\frac{\sqrt{50}}{\sqrt{80}}$ is	(q)	An Irrational number
	(C)	3 and 11 are	(r)	Co-prime number
	(D)	2	(s)	Neither composite nor prime
	(E)	1	(t)	The only even prime number
	(a) (A) - (q), (B) - (p), (C) - (t), (D) - (s), E-(r) (b) (A)-(q), (B) - (p), (C) - (r), (D) - (t), E-(s) (c) $(\mathrm{A})-(\mathrm{q}),(\mathrm{B})-(\mathrm{s}),(\mathrm{C})-(\mathrm{r}),(\mathrm{D})-(\mathrm{t}), \mathrm{E}-(\mathrm{p})$ (d) none of these			
Q. 2	In the given figure, ABCD is a rectangle. Find the values of x and y. (A) $x=18, y=2(\mathrm{~B}) x=14, y=2(\mathrm{C}) x=2, y=14$ (D) NONE			

Q. 3	(a) $\frac{a b}{a+b}$ (b) $\frac{a c}{b+c}$ (c) $\frac{b c}{b+c}$ (d) $\frac{a c}{a+c}$		
Q. 4	In $\triangle \mathrm{ABC}, \mathrm{AB}=6 \mathrm{~cm}$ and $\mathrm{DE}\left\\|\\| \mathrm{BC}\right.$ such that $A E=\frac{1}{4} A C$, then the length of AD is: a. 2 cm b. 1.2 cm c. $1.5 \mathrm{~cm} \mathrm{d}$.		
Q. 5	A girl calculates that the probability of her winning the first prize in a lottery is 0.08 . If 6000 tickets are sold, then how many tickets has she bought? (a) 40 (b) 240 (c) 480 (d) 750		
Q. 6	If a line divides any two sides of a triangle in the same ration, then the line parallel to the third side." This theorem is known as converse of: a. Area Theorem b. Basic Proportionality Theorem c. Pythagoras Theorem d. Laplace Theorem		
Q. 7	$\frac{\cos \theta-\sin \theta+1}{\cos \theta+\sin \theta-1}=$ (a) $\operatorname{cosec} \theta+\cot \theta$ (b) $\operatorname{cosec} \theta-\cot \theta$ (c) $\sec \theta+\tan \theta$ (d) none of these		
Q. 8	If the product of two coprime numbers is 217 , then their L.C.M. is (A) can't be determined (B) 217 (C) 651 (D) 434		
Q. 9	If a pair of linear equations is consistent, then the lines will be (a) parallel (b) always coincident (c) intersecting or coincident (d) always intersecting.		
Q. 10	If $\mathrm{P}\left(\frac{a}{3}, 4\right)$ is the midpoint of the line segment joining the points $\mathrm{Q}(-6,5)$ and R $(-2,3)$, then the value of a is: (A)-4(B) -12 (C) 12 (D) -6		
Q. 11	The rational form of $0.2 \overline{54}$ is in the form of $\frac{p}{q}$ then $(p+q)$ is (a) 14 (b) 55 (c) 69 (d) 79		
Q. 12	Find the area of the shaded region in Figure , where arcs drawn with centers A, B , C and D intersect in pairs at midpoint $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S of the sides $A B, B C, C D$ and $D A$ respectively of a square $A B C D$ of side 12 cm . [Use $\pi=3.14$] (a) $144 \mathrm{~cm}^{2}$ (b) $30.96 \mathrm{~cm}^{2}$ (c) $113.04 \mathrm{~cm}^{2}$ (d) none		
Q. 13	$\sec ^{4} A-\sec ^{2} A$ is equal to		

	(a) $\tan ^{2} A-\tan ^{4} A$ (b) $\tan ^{4} A-\tan ^{2} A$ (c) $\tan ^{4} A+\tan ^{2} A$ (d) NONE						
Q. 14	if $2 \cos \theta-\sin \theta=x \& \cos \theta-3 \sin \theta=y$. Then $2 x^{2}+y^{2}-2 x y=$ (a) 5 (b) 3 (c) 4(d) none						
Q. 15	Fig. depicts a racing track whose left and right ends are semi-circular. The distance between the two inner parallel line segments is 60 m and they are each 106 m long. If the track is 10 m wide everywhere, The area of the track (a) $2200 \mathrm{~cm}^{2}$ (b) $1060 \mathrm{~cm}^{2}$ (c) $4320 \mathrm{~cm}^{2}$ (d) none						
Q. 16	In Given figure , $\mathrm{AD}=3 \mathrm{~cm}, \mathrm{AE}=5 \mathrm{~cm}, \mathrm{BD}=4 \mathrm{~cm}, \mathrm{CE}=4 \mathrm{~cm}, \mathrm{CF}$ $\mathrm{cm}, \mathrm{BF}=2.5 \mathrm{~cm}, \mathrm{BF}=2.5 \mathrm{~cm}$, a. $\mathrm{DE}\\|\\| \mathrm{BC}$ b. DF $\\|\\|$ AC c. $\mathrm{EF}\\|\\| \mathrm{AB}$ d. none of the above						
Q. 17	PQ is drawn parallel to the base BC of a $\triangle A B C$ cutting AB at P and AC at Q . If $\mathrm{AB}=4 \mathrm{BP}$ and $\mathrm{CQ}=2 \mathrm{~cm}$, then AQ is equal to : (a) 2 cm (b) 4 cm (c) 6 cm (d) 8 cm						
Q. 18	$(1-\sin \theta+\cos \theta)^{2}=$ (a) $2(1+\sin \theta)(1-\cos \theta)$ (b) $2(1-\sin \theta)(1+\cos \theta)$ (c) $2(1-\sin \theta)(1-\cos \theta)$ (d) $2(1+\sin \theta)(1+\cos \theta)$						
Q. 19	Solve for x and $\mathrm{y}: \frac{x}{a}=\frac{y}{b} ; a x+b y=a^{2}+b^{2}$ (a) $x=a, y=b$ (b) $x=-a, y=b$ (C) $x=a, y=-b$ (d) none						

Q. 20 The probability of selecting a green marble at random from a jar that contains only green, white and yellow marbles is $1 / 4$. The probability of selecting a white marble at random from the same jar is $1 / 3$. If this jar contains 10 yellow marbles. The total number of marbles in the jar
(A) 6 (B) 24 (C) 10 (D) NONE

SECTION - B

In this section, attempt any 16 questions out of the Questions 21-40. Each Question is of 1 mark weightage.
Q. 21 Find the largest number which divides 445, 572 and 699 leaving remainders 4, 5 and 6 respectively .
$\begin{array}{lll}\text { (A) } 61(\mathrm{~B}) 62 & \text { (C) } 63 \text { (D) none }\end{array}$
Q. 22 The graphical representation of the pair of equations $x+2 y-4=0$ and $2 x+4 y-12=0$ represents:
((a)intersecting lines(b)parallel lines (c) coincident lines (d)all the above.

	ratio $3: 1$ then the value of y is (a) 4 (b) 3 (c) 2 (d) 1
Q. 32	If $\tan \theta+\sin \theta=m$ and $\tan \theta-\sin \theta=n$, Then $m^{2}-\mathrm{n}^{2}=$ (a) $4 \sqrt{ } \mathrm{mn}$ (b) $4 \sqrt{m}+n$ (c) $4 \sqrt{ } \mathrm{~m}-\mathrm{n}$ (d) none
Q. 33	HCF of $\left(2^{3} \times 3^{2} \times 5\right),\left(2^{2} \times 3^{3} \times 5^{2}\right)$ and $\left(2^{4} \times 3 \times 5^{3} \times 7\right)$ is (a) 30 (b) 48 (c) 60 (d) 105
Q. 34	In the given figure, $A O B$ is a sector of angle 60 of a circle with center O and radius 17 cm . If $\mathrm{AP}=15 \mathrm{~cm}$, find the area of the shaded region (a) $45.19 \mathrm{~cm}^{2}$ (b) $182.76 \mathrm{~cm}^{2}$ (c) $91.38 \mathrm{~cm}^{2}$ (d) none
Q. 35	A straight line is drawn joining the points $(3,4)$ and $(5,6)$. If the line is extended, the ordinate of the point on the line, whose abscissa is -1 is : (a) -1 (b) 0 (c) 1 (d) 2
Q. 36	In the given figure , find the area of the shaded region, enclosed between two concentric circles of radii 7 cm and 14 cm where $\angle A O C=40^{\circ}$ (a) $205.33 \mathrm{~cm}^{2}$ (b) $182.76 \mathrm{~cm}^{2}$ (c) $410.67 \mathrm{~cm}^{2}$ (d) none
Q. 37	In fig . APB and AQP are semi-circle, and $\mathrm{AO}=\mathrm{OB}$. If the perimeter of the figure is 47 cm , find the area of the shaded region. (Use $\pi=$ 22/7) (a) $57.75 \mathrm{~cm}^{2}$ (b) $346.5 \mathrm{~cm}^{2}$ (c) $115.5 \mathrm{~cm}^{2}$ (d) none
Q. 38	The zeroes of the quadratic polynomial $x^{2}+99 x-100$ are : (a) both positive (b) both negative © one positive and one negative (d) both equal

Q. 39	In fig. , two circular flower beds have been shown on two sides of a square lawn ABCD of side 56 m . If the center of each circular flower bed is the point of intersection O of the diagonals of the square lawn, find the sum of the areas of the lawn and flower beds (a) $2016 \mathrm{~cm}^{2}$ (b) $1008 \mathrm{~cm}^{2}$ (c) $4032 \mathrm{~cm}^{2}$ (d) none
Q. 40	Graphically, the pair of equations $6 x-3 y+10=0 ; 2 x-y+9=0$ represents two lines which are (A) intersecting at exactly one point. (C) coincident. (d) parallel line
	SECTION - C Case study based questions: Section C consists of 10 questions of 1 mark each. Any 8 questions are to be attempted.
	given alongside shows the path of a diver, when she takes a jump from the diving board. Clearly it is a parabola. Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at any time' t ' in seconds is given by the polynomial $\mathrm{h}(\mathrm{t})$ such that $\mathrm{h}(\mathrm{t})=-16 \mathrm{t}^{2}+8 \mathrm{t}+\mathrm{k}$.
Q. 41	What is the value of k ? (a) 0 (b) -48 (c) 48 (d) 48/-16
Q. 42	At what time will she touch the water in the pool? (a) 30 seconds (b) 2 seconds (c) 1.5 seconds (d) 0.5 seconds
Q. 43	Rita's height (in feet) above the water level is given by another polynomial $p(t)$ with zeroes -1 and 2 . Then $p(t)$ is given by- (a) $\mathrm{t}^{2}+\mathrm{t}-2$. (b) $t^{2}+2 t-1$ (c) $24 t^{2}-24 t+48$. (d) $-24 t^{2}+24 t+48$
Q. 44	A polynomial $\mathrm{q}(\mathrm{t})$ with sum of zeroes as 1 and the product as -6 is modelling Anu's height in feet above the water at any time t (in seconds). Then $q(t)$ is given by (a) $t^{2}+t+6$ (b) $\mathrm{t}^{2}+\mathrm{t}-6$ (c) $-8 t^{2}+8 t+48$ (d) $8 t^{2}-8 t+48$
Q. 45	The zeroes of the polynomial $\mathrm{r}(\mathrm{t})=-12 \mathrm{t}^{2}+(\mathrm{k}-3) \mathrm{t}+48$ are negative of each other.

Target Mathematics by- Dr.Agyat Gupta
visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. : 4010685(O), 7000636110(O) Mobile : $9425109601(\mathrm{P})$

