<u>ARGET MATHEMAT</u> by Jhe Excellence Key...

(M.Sc, B.Ed., M.Phill, P.hd)

CLASS - X (PRE - BOARD) TERM -I

(CODE-041)Time : 90 MINUTES TMC-TS-AG-TS-1-OBJ-(MCQ)

Maximum Marks: 40

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. There is no negative marking.
- 6. All questions carry equal marks.

$\mathbf{SECTION} - \mathbf{A}$

In this section, attempt any 16 questions out of Questions 1 - 20. Each Question is of 1 mark weightage.

Q.1

MATCHING QUESTIONS

DIRECTION : Each question contains statements given in two columns which have to be matched. Statement (A, B, C, D,E) in column I have to be matched with statement (p.g.r.s.t) in column II.

be match	ied with statement (p,q,r,s,t) in coi	umn 11 .
	Column-I		Column-II
(A)	$3-\sqrt{2}$ is	(p)	A Rational number between 1 and 2
(B)	$\frac{\sqrt{50}}{\sqrt{80}}$ is	(q)	An Irrational number
(C)	3 and 11 are	(r)	Co-prime number
(D)	2	(s)	Neither composite nor prime
(E)	1	(t)	The only even prime number
(c) (A) – (d) none	(q), (B) - (p), (C) - (r), (I (q), (B) - (s), (C) - (r), (I of these ren figure, ABCD is a rectang	D) - (t)	, E – (p)
D 	x+y y 16		: 2
(A) $x =$	18, $y = 2$ (B) $x = 14$, $y = 2$ (C) $x =$	2, $y = 14$ (D) NONE.

Q.3	
	$M^{46^{\circ}}$ $M^{46^{\circ}}$ K
	In the given figure, x is $b \xrightarrow{N} c \xrightarrow{K}$
	(a) $\frac{ab}{a+b}$ (b) $\frac{ac}{b+c}$ (c) $\frac{bc}{b+c}$ (d) $\frac{ac}{a+c}$
Q.4	In $\triangle ABC$, AB=6 cm and DE BC such that $AE = \frac{1}{4}AC$, then the length of AD is:
	a. 2 cm b. 1.2 cm c. 1.5 cm d. 4 cm
Q.5	A girl calculates that the probability of her winning the first prize in a lottery is 0.08 . If 6000 tickets are cald, then how menu tickets has she hought?
	0.08. If 6000 tickets are sold, then how many tickets has she bought? (a) 40 (b) 240 (c) 480 (d) 750
Q.6	If a line divides any two sides of a triangle in the same ration, then the line
	parallel to the third side." This theorem is known as converse of:a. Area Theoremb. Basic Proportionality Theorem
	c. Pythagoras Theorem d. Laplace Theorem
Q.7	$\frac{\cos\theta - \sin\theta + 1}{\cos\theta + \sin\theta - 1} =$
	$\begin{array}{c} \cos\theta + \sin\theta - 1 \\ (a) \cos ec\theta + \cot\theta \\ (b) \cos ec\theta - \cot\theta \\ (c) \sin\theta + \tan\theta \\ (d) \text{none of these} \end{array}$
Q.8	If the product of two coprime numbers is 217, then their L.C.M. is
	(A) can't be determined (B) 217 (C) 651 (D) 434
Q.9	If a pair of linear equations is consistent, then the lines will be (a) parallel (b) always coincident
	(c) intersecting or coincident (d) always intersecting.
Q.10	If P $\left(\frac{a}{3},4\right)$ is the midpoint of the line segment joining the points Q (-6,5) and R
	(-2,3), then the value of a is:
0.11	(A)-4(B) -12 (C) 12 (D) -6
Q.11	The rational form of $0.2\overline{54}$ is in the form of $\frac{p}{q}$ then $(p+q)$ is
	(a) 14 (b) 55 (c) 69 (d) 79
Q.12	$A \xrightarrow{P} B$
	$S \longrightarrow Q$
	Find the area of the shaded region in Figure R , where
	arcs drawn with centers A, B, C and D intersect in pairs at midpoint P, Q, R and S of the sides AB, BC, CD and DA respectively of a square ABCD of side
	and 5 of the sides AD , BC , CD and DA respectively of a square $ADCD$ of side 12 cm . [Use $\pi = 3.14$]
	(a) $144cm^2$ (b) $30.96cm^2$ (c) $113.04cm^2$ (d) none
Q.13	$\sec^4 A - \sec^2 A$ is equal to

	(a) $\tan^2 A - \tan^4 A$ (b) $\tan^4 A - \tan^2 A$
	(c) $\tan^4 A + \tan^2 A$ (d) NONE
Q.14	if $2\cos\theta - \sin\theta = x \& \cos\theta - 3\sin\theta = y$. Then $2x^2 + y^2 - 2xy =$ (a) 5 (b) 3 (c) 4(d) none
Q.15	$\begin{array}{c} & & 106 \text{ m} \\ & & 106 \text{ m} \\ \hline & & 40 \text{ m} \\ & & 60 \text{ m} \end{array}$
	Fig. -106 m depicts a racing track whose left and right ends are semi-circular. The distance between the two inner parallel line segments is 60 m and they are each 106 m long. If the track is 10 m wide everywhere, The area of the track (a) $2200cm^2$ (b) $1060cm^2$ (c) $4320cm^2$ (d) none
Q.16	3 cm $5 cm4 cm$ $E 4 cm$
	In Given figure B 2.5 cm F 2 cm C, AD=3 cm, AE=5 cm, BD=4 cm, CE=4 cm, CF cm, BF=2.5 cm, BF=2.5 cm, a. DE $ BC$ b. DF $ AC$ c. EF $ AB$ d. none of the above
Q.17	PQ is drawn parallel to the base BC of a $\triangle ABC$ cutting AB at P and
	AC at Q. If $AB = 4BP$ and $CQ = 2$ cm, then AQ is equal to :
	(a) 2 cm (b) 4 cm (c) 6 cm (d) 8 cm
Q.18	$(1 - \sin\theta + \cos\theta)^2 =$
	(a) $2(1+\sin\theta)(1-\cos\theta)$ (b) $2(1-\sin\theta)(1+\cos\theta)$ (c) $2(1-\sin\theta)(1-\cos\theta)$ (d) $2(1+\sin\theta)(1+\cos\theta)$
Q.19	Solve for x and y: $\frac{x}{a} = \frac{y}{b}$; $ax + by = a^2 + b^2$ (a) $x = a, y = b$ (b) $x = -a, y = b$ \bigcirc $x = a, y = -b$ (d) none
Q.20	The probability of selecting a green marble at random from a jar that contains only green, white and yellow marbles is $1/4$. The probability of selecting a white marble at random from the same jar is $1/3$. If this jar contains 10 yellow marbles. The total number of marbles in the jar (A) 6 (B) 24 (C) 10 (D) NONE
	SECTION – B
	In this section, attempt any 16 questions out of the Questions 21 - 40. Each Question is of 1 mark weightage.
Q.21	Find the largest number which divides 445, 572 and 699 leaving remainders 4, 5
	and 6 respectively.
	(A) 61(B)62 (C) 63 (D) none
Q.22	The graphical representation of the pair of equations $x + 2y - 4 = 0$ and $2x + 4y - 12 = 0$ represents:
	((a)intersecting lines(b)parallel lines (c) coincident lines (d)all the above.

Q.23	$x^2 + 5x + 2 + 3x$		(0):		
2.20	If $p(x) = x^2 + 5x + 2$, then $p(3) + 1$				
	(A)40 (B)44 (c))8	(D)42	.1	
Q.24	Without actually performing		•	C	
	expansion of $\frac{51}{1500}$ is in the form	of $\overline{2^n}$	$\frac{1}{1}$, then (m	(+ n) is equal to	
		_	-		
Q.25	(a) 2(b) 3(c)A person starts his job with a cer	<u>s</u> tain n	onthly salary	and earns a fixed increment	
	every year. If his salary was ₹45				
	10 years of service, find the sum		•		
	(A) 3900 (B) 4050 (C)	150	(D) none		
Q.26	Two different dice are thrown together. Find the probability that the product of				
	the number appeared is perfect set	quare	number		
	(a) $\frac{8}{36}$ (b) $\frac{7}{36}$ (c) $\frac{6}{36}$ (d) $\frac{5}{36}$				
Q.27	If $0 < \theta < \frac{\pi}{4}$, then the simplest form				
	(a) $\sin\theta - \cos\theta$ (b) $\cos\theta$				
	(c) $\cos\theta + \sin\theta$ (d) si				
Q.28	Match option of Column I with the	appro	priate option O	f Column II.	
	Column-I		Column-II		
	(A) The probability of	(p)	$\frac{3}{4}$		
	getting one head is		4		
	(B) The probability of	(q)	1		
	getting at least one		4		
	head is				
	(C) The probability of	(r)	$\frac{1}{2}$		
	getting two heads is		2		
	(a) (A) - r , (B) - p , (C) -	q			
	(b) (A) - q, (B) - p, (C) - r				
	(c) (A) - r, (B) - q, (C) - c	р			
0.20	(d) none of these The midneint of the line joining	than	$\frac{1}{2}$	and $(1, 2\alpha+1)$ are $(2n, 2\alpha)$	
Q.29	The midpoint of the line joining Find the values of p and q.	the po	(2p+2, 3)	and $(4, 2q+1)$ are $(2p, 2q)$.	
	(a) $p = 3 \& q = 2(b) p = 2 \& q =$	= 3 (c)	p = -2 & q =	= 3 (d) none	
Q.30		L	1 1		
		\wedge			
			\backslash		
	$a \qquad P$				
	46°				
	M	N	K		
	In the given figure		c	express x in terms of a, b	
	and c. (a) $x = \frac{ab}{a+b}$ (b) $x = \frac{ac}{b+c}$ (c) $x = \frac{bc}{b+c}$ (d) $x = \frac{ac}{a+c}$				
Q.31	If the point $P(6, 2)$ divides the li	<u>b</u> ne seo	<u>+c</u>	A(6, 5) and $B(4, v)$ in the	
2.01			Sincine Joining		

	ratio 3 :1 then the value of y is
	(a) 4 (b) 3 (c) 2 (d) 1
0.33	
Q.32	If $\tan \theta + \sin \theta = m$ and $\tan \theta - \sin \theta = n$, Then $m^2 - n^2 =$
0.22	(a) $4\sqrt{mn}$ (b) $4\sqrt{m+n}$ (c) $4\sqrt{m-n}$ (d) none
Q.33	HCF of $(2^3 \times 3^2 \times 5)$, $(2^2 \times 3^3 \times 5^2)$ and $(2^4 \times 3 \times 5^3 \times 7)$ is (a) 30 (b) 48 (c) 60 (d) 105
Q.34	In the given figure, AOB is a sector of angle 60 of a circle with center O and radius 17 cm. If $AP = 15$ cm, find the area of the shaded region
0.25	(a) $45.19cm^2$ (b) $182.76cm^2$ (c) $91.38cm^2$ (d) none
Q.35	A straight line is drawn joining the points $(3, 4)$ and $(5, 6)$. If the line is extended, the ordinate of the point on the line, whose abscissa is -1 is : (a) -1 (b) 0 (c) 1 (d) 2
Q.36	
	In the given figure $A = C = 40^{\circ}$ (a) 205.33cm ² (b) 182.76cm ² (c) 410.67cm ² (d) none
Q.37	In fig . APB and AQP are semi-circle, and AO = OB . If the perimeter of the figure is 47 cm, find the area of the shaded region. (Use $\pi = 22/7$)
Q.38	(a) $57.75cm^2$ (b) $346.5cm^2$ (c) $115.5cm^2$ (d) none The zeroes of the quadratic polynomial $x^2 + 99x - 100$ are : (a) both positive (b) both negative © one positive and one negative (d) both equal

Q.39	
Q.39	$A \longrightarrow B$
	` ★ O 56 cm
	In fig. , two circular flower beds have
	been shown on two sides of a square lawn ABCD of side 56 m. If the center of
	each circular flower bed is the point of intersection O of the diagonals of the
	square lawn, find the sum of the areas of the lawn and flower beds
	(a) $2016cm^2$ (b) $1008cm^2$ (c) $4032cm^2$ (d) none
Q.40	Graphically, the pair of equations $6x - 3y + 10 = 0$; $2x - y + 9 = 0$ represents two lines
	which are
	(A) intersecting at exactly one point. (B) intersecting at exactly two points.
	(C) coincident. (d) parallel line
	SECTION – C Case study based questions: Section C consists of 10 questions of 1 mark each $Any 8$
	Case study based questions: Section C consists of 10 questions of 1 mark each. Any 8 questions are to be attempted.
	The figure given alongside shows the path
	of a diver, when she takes a jump from the diving board. Clearly it is a parabola.
	Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at any time't' in
	seconds is given by the polynomial $h(t)$ such that $h(t) = -16t^2 + 8t + k$.
Q.41	What is the value of k?
V. 11	
Q.42	(a) 0 (b) - 48 (c) 48 (d) 48/-16 At what time will she touch the water in the pool?
¥**¥	(a) 30 seconds (b) 2 seconds (c) 1.5 seconds (d) 0.5 seconds
Q.43	Rita's height (in feet) above the water level is given by another
2.13	
	I notrinomial n(t) with zeroed I and () (I han n(t) is arran by
1	polynomial $p(t)$ with zeroes -1 and 2. Then $p(t)$ is given by-
	(a) $t^2 + t - 2$. (b) $t^2 + 2t - 1$ (c) $24t^2 - 24t + 48$. (d) $-24t^2 + 24t + 48$
Q.44	(a) $t^2 + t - 2$. (b) $t^2 + 2t - 1$ (c) $24t^2 - 24t + 48$. (d) $-24t^2 + 24t + 48$ A polynomial q(t) with sum of zeroes as 1 and the product as -6 is modelling
Q.44	(a) $t^2 + t - 2$. (b) $t^2 + 2t - 1$ (c) $24t^2 - 24t + 48$. (d) $-24t^2 + 24t + 48$ A polynomial q(t) with sum of zeroes as 1 and the product as -6 is modelling Anu's height in feet above the water at any time t(in seconds). Then q(t) is
Q.44	(a) $t^2 + t - 2$. (b) $t^2 + 2t - 1$ (c) $24t^2 - 24t + 48$. (d) $-24t^2 + 24t + 48$ A polynomial q(t) with sum of zeroes as 1 and the product as -6 is modellingAnu's height in feet above the water at any time t(in seconds). Then q(t) isgiven by
Q.44	(a) $t^2 + t - 2$. (b) $t^2 + 2t - 1$ (c) $24t^2 - 24t + 48$. (d) $-24t^2 + 24t + 48$ A polynomial q(t) with sum of zeroes as 1 and the product as -6 is modelling Anu's height in feet above the water at any time t(in seconds). Then q(t) is

	Then k is			
	(a) 3 (b) 0 (c) -1.5 (d) -3			
	CASE STUDY			
	Alpine Tents:			
	The camping alpine tent is usually made using high quality canvas and it i			
	water proof. These tents are mostly used in hilly areas as the snow will not settl			
	on the tent and make it damp. It is easy to lay out and one need not use a manual			
	to set it up. One alpine tent is shown in figure given below, which has two			
	triangular faces and three rectangular faces. Also the image of the canvas on th			
	graph paper is shown in the adjacent figure.			
	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			
	8 R S			
	O 1 2 3 4 5 6 7 8 9 10 X			
	Based on the above information, answer the following questions.			
Q.46	Distance of the point <i>Q</i> from <i>y</i> -axis is			
	(a) 9 units (b) 8 units (c) 4 units (d) 5 units			
Q.47	What are the coordinates of <i>U</i> ?			
	(a) $(2,8)$ (b) $(8,2)$ (c) $(6,9)$ (d) $(9,6)$			
Q.48	The distance between the points P and Q is			
	(a) 4 units(b) 5 units(c) 6 units(d) 7 units			
Q.49	If a point $A(x, y)$ is equidistant from R and T, then			
	(a) $y-2=0$ (b) $y-3=0$ (c) $y-5=0$ (d) $y-6=0$			
Q.50	Perimeter of image of a rectangular face is			
	(a) 5 units(b) 8 units(c) 10 units(d) 14 units			

	व्यालियर की शिक्षा जवात के महायुख्य मांग और मलता की महा मंग और मलता की महा			
- 1	A thread of the state of the st			
	re underse glasfield, trage for er film and para were of the set			
	TO CAPCICITY OF JUST A INFORMATION OF A STATE AND A ST			
समाज में व	PEG - STATE JUINT AND			
स्ताते हैं। म्यालियर वे वेशिष्ट नाम है अज्ञा				
। अपनी इस अनूठी हे प्रदेश में सर्वाधिक	a ndhà al aunni al ani aunni al ani au nighteri sen ang ha a ndhela ang hang hang hang hang hang hang hang			
भौर वे बच्चों व जीनियरिंग कॉम्प्यर्ट				
। মী অহাৰ দু	ाता म बहुत मुमायाक का मांच का कर के स्वर्थ के स्वर			
गरल तरीके का इस्टे पेनेकल के माध्यम				
देला चुके हैं। की अ				
वे कहते हैं, '	में के से रहार में निर्ण के की रहार में निर्ण के की रहार में निर्ण कर की की रहा नहा निर्ण कर की की रहा नहा निर्ज कर के क			

सी अप्र अपना रूप में प्र में अ

ञ्वालियर को इन्होंने ही ब दौर के जिक्षकों में गिने जाते हैं अपनेत स्वक मुक्त ही किया की आज हुन नामजा के स्वार्थ के प्राप्त के स्वार्थ के स्व